Система отопления в квартире схема: всё об отоплении и кондиционировании, схемы разводки систем отопления и способы подключения радиатора

Почему важно делать теплотехнический расчёт

Число секций радиаторов напрямую влияет на температуру в помещении в холодный период года. Зачастую причиной низких температур становятся неправильные теплотехнические вычисления. В таких ситуациях тепловая мощность установленных радиаторов значительно ниже тепловых потерь помещения. Важными критериями объёма теплопотерь становятся следующие:

  • сколько стен соприкасаются непосредственно с улицей: частный дом или угловая квартира;
  • размер окон;
  • назначение комнаты: спальня, санузел, кухня;
  • утеплены ли стены дополнительно с внешней стороны;
  • материал стен: кирпич, мергель и т.д.

Кроме этого в расчёт необходимо брать материал, из которого выполнена батарея, заявленную тепловую мощность, температуру теплоносителя.

Все эти факторы влияют на окончательное количество секций радиатора.

Температурные нормы воздуха в квартире

Ощущение комфорта от обогрева помещения субъективно. Однако есть единые стандарты, обусловленные физиологическими потребностями человека, а также назначением помещений, в которых он пребывает.

Хотя существует достаточно большой диапазон нормы, предписывающей, какой должна быть температура воды в системе отопления многоквартирного дома, нормативы теплового режима воздуха в квартире весьма однозначны.

Так, в соответствии со стандартами, во время отопительного сезона в квартире должен сохраняться следующий температурный режим:

  • в жилой комнате — 18 °С;
  • в жилой угловой комнате — 20 °С;
  • в ванной комнате — 25 °С;
  • в туалете (отделенном от ванной) — 18 °С;
  • в совмещенном санузле — 25 °С;
  • в кухне — 18 °С.

Что нужно зноть о теплоотдаче

Мощность радиатора, тепловой потолок, тепловая мощность — все эти понятия идентичны тепловой отдаче, единицей измерения которой является Ватт. Иногда тепловой потолок также меряется в калориях. Данную величину можно трансформировать в пересчет на Ватты: 1 Вт равен примерно 860 калориям в час.

Тепловая передача производится в результате нескольких процессов:

  • тепловой обмен;
  • конвекция;
  • излучение.

В батарее осуществляются все три способа передачи тепла, но их конкретные пропорции разнятся в зависимости от вида отопительного оборудования. К радиаторам могут относиться устройства, у которых не менее четверти тепла выделяется в виде прямого излучения. Однако нужно заменить, что на сегодняшний день границы этого требования несколько стерлись, поскольку радиаторами стали называть и конвекторные устройства.

Расчет нужной тепловой отдачи

Выбор батарей должен базироваться на максимально корректных вычислениях необходимой мощности. С одной стороны — лишние секции ни к чему, но с другой — недостаток мощности приведет к невозможности добиться желанной температуры.

На эффективность отопления влияют особенности помещения. Среди них:

  • площадь комнаты;
  • высота потолка;
  • местонахождение помещения (на углу или нет);
  • этаж;
  • количество внешних стен и окон;
  • характеристики установленных окон;
  • наличие утеплителя на внешних стенах;
  • присутствие в помещении дополнительных источников тепла;
  • наличие чердачного помещения и качество его утепления.

Существует несколько методик подсчета нужно мощности системы отопления. Самый простой способ строится на учете количества окон и стен, граничащих с улицей. Подсчет делается таким образом:

Самый простой способ подсчета мощности системы отопления — подсчет количества окон и стен, граничащих с улицей

  • в стандартной ситуации (одно окно, одна внешняя стенка) понадобится 1 кВт тепловой мощности на каждые 10 квадратных метров помещения;
  • если в помещении два окна или две наружные стенки, применяется поправочный коэффициент — 1,3 (иными словами, на каждые 10 квадратных метров необходимо 1,3 кВт тепловой мощности).

Следующий способ чуть сложнее, но он позволяет получить более точные показатели необходимой мощности, так как одним из используемых параметров являются высота помещения.

Для вычисления используется формула:

Мощность = площадь помещения x высота комнаты x 41 (согласно нормативам — минимальная мощность на кубометр помещения).

Полученный результат — требуемая тепловая мощность. Чтобы определить количество нужных секций, делим этот результат на тепловую отдачу одной секции (указано в техпаспорте батареи).

Совет! В результате вычислений может получиться дробное число. В этом случае число нужно округлить в большую сторону.

Теплоотдача и материал батареи

С точки зрения конструкционных материалов существует четыре основных вида радиаторов: чугунные, стальные, алюминиевые и биметаллические. В каждом случае теплоотдача отличается.

Чугунные батареи

Такие радиаторы характеризуются незначительной поверхностью тепловой отдачи, а также невысокой теплопроводностью. Теплоотдача чугунных радиаторов осуществляется, прежде всего, излучением и лишь пятая ее часть выпадает на конвекцию.

Каждая секция чугунной батареи имеет номинальную мощность в 180 Вт. Хотя такие показатели достигаются только в условиях лабораторных испытаний. Если же речь о системах центрального отопления, теплоноситель лишь изредка разогревается выше 80 градусов, причем часть тепловой энергии теряется еще на пути следования к радиатору. В результате, реальная теплоотдача фиксируется на уровне 50-60 Вт.

Стальные батареи

Радиаторы из стали состоят из одной или нескольких панелей, между которыми имеются так называемые ребра, выступающие в качестве конвектора. Тепловая отдача стальных устройств лишь немного выше, чему у чугунных. Поэтому их основным достоинством является невысокий вес и более эстетичный дизайн.

Если температура теплоносителя снижается, тепловая отдача стальной батареи резко падает. В связи с этим реальные характеристики радиатора могут сильно отличаться от указанных компанией-производителем.

Биметаллические батареи

По эффективности тепловой отдачи этот тип радиаторов не хуже алюминиевых. В некоторых случаях она превышает 200 Вт. При этом биметаллические устройства не столь чувствительны к качеству теплоносителя. Недостаток этих приборов — высокая стоимость.

Как обогревается комната радиатором центрального отопления

Как обогревается комната радиатором центрального отопления?

а) тепло выделяется радиатором и распространяется по всей комнате;

б) обогревание комнаты осуществляется только за счёт явления теплопроводности;

в) обогревание комнаты осуществляется только путём конвекции;

г) энергия от батареи теплопроводностью передаётся холодному воздуху и конвекцией распределяется по всей комнате.

В многоквартирных жилых домах поддержание нормативной температуры воздуха в помещениях обеспечивается системой центрального отопления. Основным видом отопительных приборов центральной сети являются радиаторы, выполненные из различных материалов. Ответу на вопрос – как обогревается комната радиатором центрального отопления – посвящена данная публикация.

По материалам изготовления радиаторы водяного отопления делят на 4 основных группы:

  1. Алюминиевые;
  2. Биметаллические;
  3. Чугунные;
  4. Стальные (панельные и трубчатые).

У каждого из материалов изготовления радиаторов имеются свои, особые теплофизические характеристики. Для систем отопления главными являются показатели теплопроводности и прочности. Величина теплопроводности оказывает прямое влияние на теплоотдачу прибор – чем она больше, тем качественней передается тепло от горячей воды воздуху отапливаемого помещения. Прочность изделия необходима для обеспечения работы батареи под высоким давлением и температурой теплоносителя.

Каждый из материалов батарей имеет свои требования к составу теплоносителя. Устройства из стали и со стальными каркасами (биметаллические) подвержены коррозии при большом содержании кислорода, алюминий чувствителен к величине водородного показателя. Только чугун отличается малым коррозионным износом и нейтрален к химическому составу воды.

Принцип работы радиатора заключается в использовании конвективного движения воздуха. По законам физики теплый воздух всегда поднимается вверх из-за меньшей плотности (и соответственно веса). Теплоноситель с высокой температурой движется во внутреннем полом пространстве батареи и нагревает стенку устройства из металла. Металл передает тепло воздуху помещения.

Холодный воздух сосредоточен в нижней части помещения, он поступает в наружную конструкцию радиатора, нагревается и поднимается вверх. Его место занимает новая порция холодного воздуха. Такое движение реализуется на постоянной основе (при условии нагрева радиатора теплоносителем).

Для оптимизации движения воздуха через конструкцию батареи поверхности изделий оснащаются пластинами оребрения. Они увеличивают площадь теплообмена и корректируют направление движения воздуха. Кроме того, для реализации конвективного движения воздуха необходимо, чтобы между радиатором и ограждающими конструкциями имелись зазоры. Нормативная величина их имеет следующие значения:

  1. Расстояние от пола – от 60 до 100 мм;
  2. Расстояние от стены до задней плоскости устройства – не менее 20 мм;
  3. Зазор от верхнего среза батареи до подоконника – не менее 50 мм.

Кроме конвективной теплоотдачи радиаторы передают тепло с помощью лучистого теплообмена (теплового излучения). Тепло при этом передается непосредственно окружающим предметам.

Тепловая мощность радиаторов корректируется с помощью различных видов арматуры – шаровых кранов, ручных и терморегулирующих вентилей. Кроме того, теплоноситель поступает в сеть с определенной температурой, которая меняется теплоснабжающими организациями в зависимости от температуры окружающего воздуха.

Радиаторы являются основным видом отопительных приборов в центральных системах отопления многоэтажных домов. Они отличаются простотой устройства и эксплуатации, обладают высокой прочностью и эффективностью. Еще один важный фактор – батареи всегда дешевле вторых по популярности водяных приборов отопления – конвекторов.

Как радиатор отопления нагревает комнату?

Конвекционные потоки создаются, когда воздух над радиатором нагревается, затем охлаждается и затем снова нагревается. Этот процесс происходит непрерывно, пока у вас включено отопление. Таким образом радиаторы перемещают тепло по комнате, что делает дом теплым и уютным. Если выразиться по-научному — тепло создается за счет перехода потенциальной энергии в кинетическую.

Когда радиатор отопления нагревает воздух — это заставляет атомы вибрировать на высокой частоте. Атомы продолжают вибрировать все быстрее и быстрее в результате чего создается тепловая энергия. Этот процесс известен как конвекция.

Как ни странно,  к подогреву пола термин “радиатор” подходит гораздо лучше. Поскольку эта система фактически излучает тепло по всей комнате. Более половины тепла, создаваемого системами теплого пола производится через излучение.

Возьмите от радиатора максимум

Учитывая, что радиатор работает создавая эти прекрасные конвекционные потоки, в то время как вы смотрите футбол – стоит убедиться, что тепло остается внутри дома. Это позволит сэкономить энергию, деньги и тепло. Тепловая энергия, как Гудини – любит незаметно исчезать.

Она может уходить через крышу, окна, стены и любой маломальский зазор невидимый для человеческого глаза. Ваши бедные биметаллические радиаторы (или горячие ящики ☺) работают так тяжело, а вы позволяете теплу покидать дом? Не делайте этого!

Как температура распределяется внутри дома

Установите чердачную изоляцию, изолируйте полости стен и убедитесь, что окна находятся в хорошем состоянии. Это позволит удержать атомы внутри помещения и не даст им вырваться на улицу унося с собой драгоценные градусы тепла.

Циркуляция воздуха

Основная проблема низкой теплоотдачи — это плотные шторы, которые прячут «некрасивые» батареи. Из-за этого нарушается циркуляция воздуха (конвекция). Поток воздуха недостаточно выбрасывается в помещение. Выходит так, что радиатор больше греет самого себя, а не окружающее пространство.


Также большую роль играет большая глубина подоконника или ниша, в которую пытаются спрятать радиатор. Здесь уже каждый выбирает для себя. Либо скрывать «страшный» радиатор от глаз, либо качественно отапливать свою квартиру. Мы советуем найти некий баланс, попробовать более легкие шторы или оформить визуально окно так, чтобы воздух свободно выходил из радиатора.



Низкие батареи

Радиаторы, имеющие малое межосевое расстояние отличаются следующими преимуществами:

  • их можно разместить под низко расположенным подоконником;
  • они обладают максимальной теплоотдачей на единицу площади.

Чугунные радиаторы

Размеры секций радиаторов отопления МС-140М-300-0.9 составляют:

  • длина 93 миллиметра;
  • глубина – 140 миллиметров;
  • высота – 388 миллиметров.

По причине меньших габаритов снижается теплоотдача чугунных радиаторов отопления – она равна 106 ватт от одной секции при рабочем давлении 9 кгс/см². Среди зарубежных аналогов встречаются чугунные изделия с межосевым расстоянием по подводкам, равным 200 и 350 миллиметров, мощность секции чугунного радиатора такого типа гораздо выше.

Почему при одинаковом размере помещений радиатор парового

Алюминиевые радиаторы

. У низких батарей из алюминия, как отечественного, так и импортного производства, разброс величины межосевых расстояний достаточно велик. Можно встретить размеры батарей отопления 150, 300 и даже 450 миллиметров. Поскольку возможная длина секции стартует от 40 миллиметров, прибор выглядит компактно и необычно. Низкие алюминиевые радиаторы отопления размеры по высоте имеют, начиная от 200 миллиметров. Глубина многих моделей компенсирует недостаток двух других параметров и составляет 180 миллиметров.

Что касается тепловой мощности, то она варьируется в пределах от минимальных 50 ватт на секцию до максимальных 160 ватт. Определяющим фактором является площадь оребрения одной секции. При этом изменение габаритов влияет на рабочее давление не существенно – низкие алюминиевые приборы рассчитаны на 16 атмосфер, а при проведении испытаний на 24 атмосферы.

Биметаллические радиаторы

. Все размеры батарей отопления, которые они имеют, характерны также и для алюминиевых отопительных приборов. Тепловая мощность находится в тех же пределах. В продаже можно встретить алюминиевые низкие радиаторы, у которых теплоотдача равна 80 и 140 ватт на секцию. Рабочее давление составляет 25-35 атмосфер.

Биметаллические низкие радиаторы, такие как на фото, имеют два нюанса:

  • среди отопительных приборов встречаются батареи не со сплошными стальными сердечниками, а с трубками из стали, помещенными между алюминиевыми коллекторами. Их рабочее давление, указанное производителями, обычно равно 12 или 16 атмосфер;
  • они часто не имеют вертикально расположенных каналов и в случае бокового подключения могут прогреваться от коллекторов за счет теплопроводности алюминия. Циркуляцию теплоносителя обеспечивает последняя секция, так как она является проточной.



Отступы радиатора

В инструкции к радиаторам и другим приборам для отопления всегда указывают необходимые отступы. Не стоит игнорировать эти указания, они играют важную роль при установке. К тому же самым главным параметром является глубина установки батареи. Именно благодаря этому радиатор использует свои возможности по максимуму.
Отступ от стены до задней стенки радиатора должен быть не меньше чем 50 мм. То же самое касается расстояния от пола — 5 см как минимум. Безусловно, нужно смотреть в инструкцию и внимательно следить за расстояниями во время установки. В случае, когда подоконник выступает за батарею, для каждого сантиметра выступа расстояние до подоконника должно быть увеличено на 2,5 см. В таком случае подоконник не будет мешать правильной циркуляции теплого воздуха.


Какие радиаторы поставить в квартиру с центральным отоплением

Однозначный ответ на данный вопрос все же дать сложно, ведь все зависит от конкретной ситуации, например, жилищных условий и приемлемого для хозяев квартиры ценового диапазона. Однако эксперты чаще всего советуют следующее. Для централизованного отопления сегодня все же стоит выбирать биметаллические конструкции, в которых сочетается прочность, эстетичный вид и хорошая теплоотдача. Чугунные элементы отопления – это тоже хороший вариант, но они требуют должного ухода, да и стоят дороже.

Чрезмерное число секций

Случаются и обратные ситуации, когда тепловая мощность радиаторов значительно превышает тепловые потери помещения. Кажется, что в этом нет ничего страшного. Однако высокая температура в помещении зимой приводит к снижению здорового количества влажности, негативно влияет на слизистые оболочки, заставляет открывать окна и форточки, что грозит сквозняками и, как следствие, простудами.

Недостаток радиаторов

Слишком малое количество секций в установленном радиаторе приводит к недостаточному отоплению помещения. Кроме того, что вы будете попросту замерзать, существует угроза появления сырости и плесени, что влечёт за собой не только простудные, но и другие заболевания. Вам придётся дополнительно отапливать квартиру с помощью электрических или иных обогревателей, что влечёт, как минимум, лишние финансовые затраты.

Варианты отопления без батарей

Сегодня существует несколько видов теплых полов, каждый из которых имеет свои плюсы и минусы. Целесообразность установки каждого вида в качестве основного отопления зависит от параметров помещения и планируемого источника тепла.

Водяной пол

Для работы данного типа отопления нужен котел, обеспечивающий нагрев теплоносителя, и насос, за счет которого вода циркулирует по трубопроводу. Монтаж водяного пола весьма сложен и требует укладки нескольких слоев материала (теплоизоляция, арматурная сетка, бетонная стяжка, чистовое покрытие). Может использоваться как самостоятельное, так и дополнительное отопление для помещений любых размеров, однако для больших домов потребуется проведение сложных расчетов и установка одного или нескольких коллекторов.

Кабельный пол

Электрические нагреватели кабельного типа занимают часть площади пола (около 70%), их укладывают в местах, свободных от мебели и тяжелых предметов. Обычно применяется для самостоятельного отопления небольших помещений или в качестве дополнительного, так как обогревать большой дом электричеством экономически не выгодно.

Инфракрасный пленочный пол

Подходит для небольших и средних помещений и не требует укладки цементной стяжки, поэтому монтаж ИК-пленки целесообразно проводить не только на пол, но также на стены и потолок. Данный тип отопления может быть использован в качестве основного при условии стабильного электроснабжения.

Стержневой электрический пол

Настил из соединенных между собой карбоновых стержней укладывается под бетонную стяжку или плитку и обеспечивает наиболее эффективное распределение тепла, излучаемого в ИК-диапазоне. Данный вид рационально использовать для обогрева отдельных комнат или небольших помещений.

Почему теплоотдача батареи со временем уменьшается

Причины снижения теплоотдачи нередко обусловлены конструктивными особенностями радиаторов отопления. Данный параметр зависит от:

  • типа материала, из которого изготовлен радиатор;
  • числа секций в батарее;
  • типа соединения батареи и трубы отопления;
  • скорости циркуляции жидкости (теплоносителя) в батарее;
  • уровня нагрева теплоносителя.

Сказанное означает, что снижение теплоотдачи нередко объясняется снижением температуры теплоносителя или неправильным монтажом батареи.

Но если указанные факторы исключены, то данная проблема возникает по следующим причинам:

  • засорение радиаторов и труб отопления ржавчиной, накипью и другими загрязнениями;
  • образование воздушных пробок в коммуникациях центрального отопления;
  • установка декоративного короба на батарею;
  • чрезмерное загрязнение радиатора;
  • нанесено много слоев краски поверх отопительного прибора.

За исключением первых двух причин воздействие приведенных факторов приводит к незначительному снижению отдачи тепла.

Увеличение теплоотдачи краской

Существуют простейшие способы оптимизации температуры в помещении, которые не требуют вызова специалистов. Примером служит окрашивание батарей отопления. Согласно курсу физики, теплоотдача у темных предметов выше, чем у светлых. Есть мнение, что окраска белого радиатора в коричневый или темно-бронзовый цвет повысит выделение тепла на 20–25%. Выбирать краску для батареи нужно тщательно — лучше купить эмаль с самой низкой способностью к теплоизоляции.

Алкидная эмаль для радиаторов отопления
Алкидная эмаль для радиаторов отопления

Окрашивание в черный цвет

Самой темной краской среди всех возможных является черная, и именно ее рекомендуется использовать для покраски труб и батарей отопления. Есть физическое понятие «абсолютно черного тела», которое наиболее емко поглощает и излучает энергию. Действительно, при проведении расчетов мощность излучения белой батареи будет ниже, чем той, что выкрашена в черный матовый цвет.

На практике же изменение цвета батареи не приносит существенной пользы, ведь все подсчеты относятся к идеальным условиям эксплуатации. Поскольку в обычных радиаторах отмечается конвективный теплообмен, смена внешнего вида батареи на него почти не повлияет. Более того, делать батарею черной не стоит и из эстетических соображений, ведь она будет смотреться тяжело и даже отталкивающе. Единственным выходом станет применение специального темного алюминиевого кожуха, который надевается на радиатор. Он несколько увеличивает теплоотдачу, хотя при слабом нагреве теплоносителя и засоренности батарей тоже будет бесполезным.

Покраска черной краской улучшает теплоотдачу радиаторов

Покраска черной краской улучшает теплоотдачу радиаторов

Удаление лишней краски и пыли

До принятия радикальных мер можно попытаться улучшить теплообмен батареи наименее сложным способом. Нередко на поверхности изделия присутствует толстый слой пыли, который служит своеобразным теплоизолятором. Вначале стоит тщательно промыть радиатор, удалив грязь, и только затем оценить качество его работы.

Плотный слой краски тоже отрицательно сказывается на функциональной способности батареи. Во время отопительного сезона наслоения ЛКМ снижают выделение тепла в воздух, поэтому от них придется избавиться. Желательно произвести все работы еще до подключения отопления: отшлифовать поверхности до чернового металла и нанести новый тонкий слой краски.

Снятие старой краски с батарей отопления

Снятие старой краски с батарей отопления

Иные способы повышения теплоотдачи

В народе придумано несколько нестандартных решений, как улучшить микроклимат в помещении путем оптимизации теплоотдачи радиаторов.

Использование экрана-отражателя

Самодельный отражатель — популярное «изобретение», способствующее повышению качества работы отопительной системы. Такой экран предназначен для перенаправления теплового потока внутрь помещения, исключая его потерю из-за ухода на наружные стены. В результате монтажа отражателя температура в комнате может немного увеличиться.

Чаще всего экран делают из фольгоизолона — вспененного полиэтилена, одна сторона которого является фольгированной. При отсутствии такого материала можно применять и обычную фольгу, главное, чтобы она была достаточно прочной и не рвалась. Из основы вырезают отражатель чуть большего размера, чем сам радиатор, размещают его за батареей, закрепив на двухсторонний скотч или клей. До установки экрана часть тепла грела стену, а теперь это количество энергии станет идти внутрь квартиры.

Установка теплоотражающего экрана за батареей

Установка теплоотражающего экрана за батареей

Если есть возможность, то вместо фольги за радиатором стоит поместить ребристый щит из блестящей стали. Он станет не только отражать тепло, но и накапливать его, отдавая энергию даже в случае временного недолгого отключения отопления. Более дорогостоящими, но и высокоэффективными, считаются щиты из базальта с алюминиевым покрытием.

Увеличение циркуляции воздуха

Проще всего оптимизировать теплообмен в комнате путем обычного улучшения циркуляции воздуха. Случается, что рядом с батареями стоит мебель, либо они скрыты тяжелыми шторами. Чтобы такие препятствия не мешали теплу проникать в дом, от них нужно избавиться, ведь иначе скорость воздушных потоков не повысить. Если освободить батарею от закрывающих ее элементов, тепло станет свободнее перемещаться по комнате.

Использование вентилятора для улучшения циркуляции воздуха

Использование вентилятора для улучшения циркуляции воздуха

Кроме того, для улучшения теплообмена некоторые используют вентилятор. Этот электроприбор способствует ускорению циркуляции нагретого воздуха, следовательно, естественная конвекция улучшается. В сторону комнаты пойдет максимально возможное количество тепла, которое способен выработать конкретный радиатор. При покупке вентилятора лучше обратить внимание на модели, не издающие шума, а также экономичные по затратам электричества. Ставить вентилятор надо под небольшим углом к радиатору и оставлять его работать на несколько часов.

Продувка радиаторов

Если батарея плохо работает из-за засорения или наличия воздушных пробок, придется обратиться к специалистам. Самостоятельно устранять проблему категорически не рекомендуется, к тому же, это требует применения специального оборудования. Для продувания труб могут использоваться разные методики:

  • гидравлическая продувка;
  • пневмогидроимпульсная промывка;
  • чистка химическими растворами.

Гидравлическая прочистка системы отопления

Гидравлическая прочистка системы отопления

Выбор метода осуществляет специалист в зависимости от тяжести проблемы. Для проведения некоторых мероприятий придется кооперироваться с соседями. Качественное выполнение работ поможет повысить эффективность системы отопления и улучшить микроклимат в доме.

Отражающие экраны

Для утепления дома также можно использовать фольгированные экраны. Они отлично повышают КПД системы отопления. Такая конструкция похожа на барьер между радиатором и стеной, которая в таком случае не забирает полезное тепло на себя. Кроме того, использование такого экрана повышает температурный режим на 2–3 градуса тепла. А энергия, затраченная на обогрев, снижается в среднем примерно на 5 %.


Этот способ чаще всего используют на практике. Почти у каждого третьего из моих знакомых есть такие фольгированные экраны для радиатора. Никто еще ни разу не пожалел об этом полезном приобретении.

Разновидности разводки отопления

В зависимости от способа подвода теплоносителя к радиаторам распространение получили следующие схемы систем обогрева зданий и сооружений:

  • Однотрубная.
  • Двухтрубная.

Данные способы отопления принципиально различаются друг от друга, и каждый обладает как положительными свойствами, так и отрицательными.

Однотрубная схема отопительных систем

Однотрубная система отопления

Однотрубная система отопления: вертикальная и горизонтальная разводка.

В однотрубной схеме систем отопления подвод горячего теплоносителя (подача) к радиатору и отвод остывшего (обратка) осуществляется по одной трубе. Все приборы относительно направления движения теплоносителя соединены между собой последовательно. Поэтому температура теплоносителя на входе в каждый последующий радиатор по стояку значительно снижается после снятия тепла с предыдущего радиатора. Соответственно теплоотдача радиаторов с удалением от первого прибора снижается.

Такие схемы используются, в основном, в старых системах центрального теплоснабжения многоэтажных зданий и в автономных системах гравитационного типа (естественная циркуляция теплоносителя) в частных жилых домах. Главным определяющим недостатком однотрубной системы является невозможность независимой регулировки теплоотдачи каждого радиатора в отдельности.

Для устранения этого недостатка возможно использование однотрубной схемы с байпасом (перемычкой между подачей и обраткой), но и в этой схеме первый радиатор будет на ветке всегда самый горячий, а последний самым холодным.

Вертикальная однотрубная система отопления.

В многоэтажных домах используется вертикальная однотрубная система отопления.

В многоэтажных домах использование такой схемы позволяет экономить на длине и стоимости подводящих сетей. Как правило, отопительная система выполнена в виде вертикальных стояков, проходящих через все этажи здания. Теплоотдача радиаторов рассчитывается при проектировании системы и не может быть отрегулирована с помощью радиаторных вентилей или другой регулирующей арматуры. При современных требованиях к комфортным условиям в помещениях, эта схема подключения приборов водяного обогрева не удовлетворяет требованиям жителей квартир, находящихся на разных этажах, но присоединенных к одному стояку системы отопления. Потребители тепла вынуждены «терпеть» перегрев или недогрев температуры воздуха в переходный осенний и весенний период.

Однотрубное отопление в частном доме.

Отопление по однотрубной схеме в частном доме.

В частных домах однотрубная схема используется в гравитационных отопительных сетях, в которых циркуляция горячей воды осуществляется благодаря дифференциалу плотностей нагретого и остывшего теплоносителей. Поэтому такие системы получили название естественных. Главным плюсом этой системы является энергонезависимость. Когда, например, при отсутствии в системе циркуляционного насоса, подключаемого к сетям электроснабжения и, в случае перебоев с энергопитанием, система отопления продолжает функционировать.

Главным недостатком гравитационной однотрубной схемы подключения является неравномерное распределение температуры теплоносителя по радиаторам. Первые радиаторы на ветке будут самые горячие, а по мере удаления от источника тепла температура будет падать. Металлоемкость гравитационных систем всегда выше, чем у принудительных за счет большего диаметра трубопроводов.

Видео о устройстве однотрубной схемы отопления в многоквартирном доме:

Двухтрубная схема отопительных систем

В двухтрубных схемах подвод горячего теплоносителя к радиатору и отвод остывшего из радиатора осуществляются по двум разным трубопроводам отопительных систем.

Существует несколько вариантов двухтрубных схем: классическая или стандартная, попутная, веерная или лучевая.

Двухтрубная классическая разводка

Двухтрубная схема отопления

Классическая двухтрубная схема разводки система отопления.

В классической схеме направление движения теплоносителя в подающем трубопроводе противоположно движению в обратном трубопроводе. Эта схема наиболее распространена в современных системах отопления как в многоэтажном строительстве, так и в частном индивидуальном. Двухтрубная схема позволяет равномерно распределять теплоноситель между радиаторами без потерь температуры и эффективно регулировать теплоотдачу в каждом помещении, в том числе автоматически путем использования термостатических клапанов с установленными термоголовками.

Двухтрубное отопление в многоэтажном доме.

Такое устройство имеет двухтрубная система отопления в многоэтажном доме.

Попутная схема или «петля Тихельмана»

Попутная разводки отопления

Попутная схема разводки отопления.

Попутная схема является вариацией классической схемы с тем отличием, что направление движения теплоносителя в подаче и обратке совпадает. Такая схема применяется в системах отопления с длинными и удаленными ветками. Использование попутной схемы позволяет уменьшить гидравлическое сопротивление ветки и равномерно распределить теплоноситель по всем радиаторам.

Веерная (лучевая)

Веерная или лучевая схема используется в многоэтажном строительстве для поквартирного отопления с возможностью установки на каждую квартиру прибора учета тепла (теплосчетчика) и в частном домостроении в системах с поэтажной разводкой трубопроводов. При веерной схеме в многоэтажном доме на каждом этаже устанавливается коллектор с выходами на все квартиры отдельного трубопровода и установленным теплосчетчиком. Это позволяет каждому владельцу квартиры учитывать и оплачивать только им потребленное тепло.

Веерная разводка отопления

Веерная или лучевая система отопления.

В частном доме веерная схема используется для поэтажного распределения трубопроводов и для лучевого подключения каждого радиатора к общему коллектору, т. е. к каждому радиатору походит отдельная труба подачи и обратки от коллектора. Такой способ подключения позволяет максимально равномерно рассредоточить теплоноситель по радиаторам и уменьшить гидравлические потери всех элементов системы отопления.

Обратите внимание! При веерной разводке трубопроводов в пределах одного этажа монтаж осуществляется цельными (не имеющими разрывов и разветвлений) отрезками труб. При использовании полимерных многослойных или медных труб все трубопроводы могут быть залиты в бетонную стяжку, тем самым снижается вероятность разрыва или подтекания в местах состыковки элементов сети.

Разновидности подключения радиаторов

Основными способами подключения приборов отопительных систем является несколько типов:

  • Боковое (стандартное) подключение;
  • Диагональное подключение;
  • Нижнее (седельное) подключение.

Боковое подключение

Боковое подключение радиатора

Боковое подключение радиатора.

Подключение с торца прибора – подача и обратка находятся с одной стороны радиатора. Это наиболее распространенный и эффективный способ подключения, он позволяет снять максимальное количество тепла и использовать полностью теплоотдачу радиатора. Как правило, подача находится сверху, а обратка снизу. При использовании специальной гарнитуры возможно подключение снизу–вниз, это позволяет максимально спрятать трубопроводы, но снижает теплоотдачу радиатора на 20 – 30%.

Диагональное подключение

Схема диагонального подключения радиатора.

Диагональное подключение радиатора.

Подключение по диагонали радиатора – подача находится с одной стороны прибора сверху, обратка с другой стороны снизу. Такой тип подключения используется в тех случаях, когда длина секционного радиатора превышает 12 секций, а панельного 1200 мм. При установке длинных радиаторов с боковым подключением присутствует неравномерность прогрева поверхности радиатора в наиболее удаленной от трубопроводов части. Чтобы радиатор прогревался равномерно, применяют диагональное подключение.

Нижнее подключение

Нижнее подключение радиатора.

Нижнее подключение с торцов радиатора

Подключение с низа прибора – подача и обратка находятся внизу радиатора. Такое подключение используется для максимально скрытого монтажа трубопроводов. При монтаже секционного прибора отопления и подключения его нижним способом подающий трубопровод подходит с одной стороны радиатора, а обратный с другой стороны нижнего патрубка. Однако эффективность теплоотдачи радиаторов при такой схеме снижается на 15-20%.

Подключение радиатора снизу.

Нижнее подключение радиатора.

В случае когда нижнее подключение используется для стального панельного радиатора, тогда все патрубки на радиаторе находятся в нижнем торце. Конструкция самого радиатора при этом выполнена таким образом, что подача поступает по коллектору сначала в верхнюю часть, а затем обратка собирается в нижнем коллекторе радиатора, тем самым теплоотдача радиатора не снижается.

Нижнее подключение радиатора

Нижнее подключение в однотрубной схеме отопления.

Подведём итог

Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.

Как можно повысить теплоотдачу батарей отопления

Наиболее оптимальный вариант – всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен

Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже – редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами – эта информация будет весьма полезна.

Источники

  • https://OmShantiDom.ru/sistemy/kak-obogrevaetsya-komnata-radiatorom-centralnogo-otopleniya.html
  • https://YulkinDom.ru/vidy-sistem/kak-obogret-kvartiru-bez-otopleniya.html
  • https://tehnolen.ru/kak-obogrevaetsya-komnata-radiatorom-centralnogo-otopleniya-kakie/
  • https://stroydomdom.ru/kak-obogrevaetsya-komnata-radiatorom-tsentralnogo-otopleniya/
  • http://teplo-klimat.com/kak-radiator-otopleniya-nagrevaet-pomeshhenie/
  • https://kraska.guru/kraski/rabota/kak-povysit-temperaturu.html
  • https://santech-info.ru/otoplenie/tipovye-sxemy-sistem-otopleniya.html
  • https://vse-otoplenie.ru/kak-uvelicit-teplootdacu-radiatora-otoplenia

Понравилась статья? Поделиться с друзьями:
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять
Политика конфиденциальности
Adblock
detector