Гидравлический расчет системы отопления: цель и ход выполнения, вычисления

Содержание

Как проводятся вычисления гидравлического расчета

Существуют некоторые задачи, которые необходимо решить, дабы произвести гидравлический расчет системы отопления:

  1. Определите диаметр труб на всех участках системы (не забудьте учесть при этом скорость перемещения носителя тепла).
  2. Рассчитайте потерю давления.
  3. Решите гидравлическую увязку.
  4. И, конечно же, расход теплоносителя.

Коэффициент гидравлического сопротивления: что это такое и как высчитывается

Коэффициенты местных гидравлических сопротивлений примеры

Выражаться гидравлические потери могут по-разному — в единицах давления или линейных единицах столба жидкости, потерях напора.

Общая формула потери напора выглядит так:

△H = △P/(pg),

где △P — потери в единицах давления,

Читайте также:  Тепловая мощность: особенности и варианты расчета нагрузки на отопление, расчет мощности отопительного котла

p — плотность среды,

g — ускорение свободного падения.

В сфере промышленности, в производственной практике перемещение жидкостей в потоках неразрывно связано с необходимостью преодоления гидравлического сопротивления трубы по всему пути потока. Кроме этого, гидравлические потери обуславливаются местным сопротивлением встречающихся на пути ответвлений и кранов, задвижек и вентилей, поворотов и диафрагм.

Чтобы преодолевать местные сопротивления, поток затрачивает определенную часть энергии — в этом случае речь идет о потере напора на локальные сопротивления. Как правило, такие потери выражают в долях от скоростного напора, который соответствует средней скорости среды в трубах до местного сопротивления либо после него.

Найти данные о коэффициентах разных местных сопротивлений можно в соответствующих учебниках, пособиях, справочниках по гидравлике — данные могут быть представлены в разном виде, например как отдельные значения коэффициента гидравлических потерь, в виде диаграмм, таблиц, эмпирических формул.

При желании или необходимости потери напора на локальные гидравлические сопротивления можно рассчитать самостоятельно. Для этого используется формула:

hr = ξ υ² / (2g),

где ξ представляет собой коэффициент местного сопротивления. Как правило, его определяют опытным путем,

g — ускорение свободного падения.

Гидравлические сопротивления и их расчет



Виды гидравлических сопротивлений

При движении жидкости в трубе между нею и стенками трубы возникают дополнительные силы сопротивлении, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается следующим слоям, отстоящим далее от поверхности трубы, причем скорость движения частиц по мере удаления их от оси трубы постепенно уменьшается.

Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению жидкости, и параллельна направлению движения. Это и есть силы гидравлического трения (сопротивления гидравлического трения).

Для преодоления сопротивления трения и поддержания равномерного поступательного движения жидкости необходимо, чтобы на жидкость действовала сила, направленная в сторону ее движения и равная силе сопротивления, т. е. необходимо затрачивать энергию. Энергию или напор, необходимый для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.
Потери напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока(линейные потери напора) и обозначаются обычно hтр.

Однако трение является не единственной возможной причиной, вызывающей потери напора. Резкое изменение сечения также оказывает сопротивление движению жидкости (так называемое сопротивление формы) и вызывает потери энергии. Существуют и другие причины, вызывающие потери напора, например внезапное изменение направления движения жидкости.
Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы), называют местными потерями напора или потерями напора на местные сопротивления и обозначаются через hм.

Таким образом, потери напора при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.:

hS = hтр + hм

Потери напора при равномерном движении жидкости в трубах

Найдем общее выражение для потерь напора на трение при равномерном движении жидкости в трубах, справедливое как для ламинарного, так и для турбулентного режимов.

При равномерном движении величина средней скорости и распределение скоростей по сечению остаются неизменными по всей длине трубопровода. Поэтому равномерное движение возможно лишь в трубах постоянного сечения S, так как в противном случае будет изменяться средняя скорость в соответствии с уравнением:

v = Q/S = const

Равномерное движение имеет место в прямых трубах или в трубах с очень большим радиусом кривизны R(прямолинейное движение), так как в противном случае средняя скорость может изменяться по направлению.
Кроме того, условие неизменности характера скоростей жидкости по живому сечению можно записать в виде α= const, где α – коэффициент Кориолиса. Последнее условие может быть соблюдено лишь при достаточном удалении рассматриваемого участка потока от входа в трубу.

Если выделить на участке трубы с равномерно текущей жидкостью два произвольных сечения 1 и 2, то потери напора при перемещении жидкости между этими сечениями можно описать при помощи уравнения Бернулли:

z1 + p1/γ = z2 + p2/γ +hтр

где:
z1 и z2 – перепад высот между центрами соответствующих сечений;
p1 и p2 – давление жидкости в соответствующих сечениях;
γ – удельная плотность жидкости, γ = gρ;
hтр – величина потерянной энергии (потери на трение).

Из этой формулы выразим величину потерянной энергии hтр:

hтр = (z1 + p1/γ) — (z2 + p2/γ)

Это выражение называют уравнением равномерного движения жидкости в трубопроводе. Если труба расположена горизонтально, т. е. перепад высот между ее сечениями отсутствует, то уравнение примет упрощенный вид:

hтр = p1/γ — p2/γ = (p1 – p2)/γ



Как вычислить гидравлическое сопротивление системы отопления

Чтобы решить из какого материала брать трубы, нужно узнать сопротивление гидравлики на всех участках системы обогрева и сравнить его.

Читайте также:  Утепление канализации, смонтированной под слоем земли

Сопротивление может возникать в самой трубе из-за ее поворотов, сужений или расширений, а также в соединениях между шаровыми кранами, тройниками или балансирующими приборами.

Расчетным участком обычно считается труба с неменяющимся расходом жидкости, равным запланированному балансу тепла помещения.

Для расчета потерь берутся следующие данные, учитывая сопротивление арматуры:

  • Диаметр и длина трубы на нужном участке;
  • Параметры регулировочной арматуры от фирмы-производителя;
  • Скорость, с которой движется теплоноситель;
  • Шероховатость трубопровода и толщина его стенок;
  • Данные из справочника: потери трения и его коэффициент, плотность жидкости.

Если нужно самостоятельно вычислить удельные потери трения нужно знать внешний диаметр трубы, толщину ее стенки и скорость, с которой подается жидкость.

Чтобы найти гидравлическое сопротивление на одном участке, можно воспользоваться формулой Дарси-Вейсбаха:

Формула Дарси-Вейсбаха для равномерного движения жидкости в трубах

При равномерном движении жидкости в трубах потери напора на трение по длине hл определяют по формуле Дарси-Вейсбаха, которая справедлива для круглых труб, как при турбулентном, так и при ламинарном режиме.
Эта формула устанавливает зависимость между потерями напора hл, диаметром трубы d и средней скоростью потока жидкости v:

hл = λv2/2gd

где:
λ – коэффициент гидравлического трения (величина безразмерная);
g – ускорение свободного падения.

Для труб произвольного сечения в формуле Дарси-Вейсбаха используют понятие приведенного или эквивалентного диаметра сечения трубы по отношению к круглому сечению.

В некоторых случаях используют также формулу

hл = v2l/C2R

где:
v – средняя скорость потока в трубе или канале;
l – длина участка трубы или канала;
R – гидравлический радиус потока жидкости;
С – коэффициент Шези, связанный с коэффициентом гидравлического трения λ зависимостью: С = √(8g/λ) или λ = 8g/С2. Размерность коэффициента Шези – м1/2/с.

Для определения коэффициента гидравлического трения при различных режимах и условиях движения жидкости применяют различные способы и эмпирические зависимости, в частности, график И. И. Никурадзе, формулы П. Блазиуса, Ф. А. Шевелева(для гладких труб) и Б. Л. Шифринсона(для шероховатых труб). Все эти способы и зависимости опираются на критерий Рейнольдса Re и учитывают состояние поверхности труб.

Назначение гидравлического расчета отопления

Пример схемы отопления с учетом расчетных данных

Пример схемы отопления с учетом расчетных данных

При работе любой системы теплоснабжения неизбежно возникает гидравлическое сопротивление при движении теплоносителя. Для учета этого параметра необходим гидравлический расчет двухтрубной системы отопления. Его суть заключается в правильном выборе компонентов системы с учетом их эксплуатационных качеств.

Фактически гидравлический расчет систем водяного отопления представляет собой сложную процедуру, во время выполнения которой учитываются все тонкости и нюансы. На первом этапе следует определиться с требуемой мощностью отопления, выбрать оптимальную схему разводки трубопроводов, а также тепловой режим работы. На основе этих данных делается гидравлический расчет системы отопления в Excel или специализированной программе. Итогом вычислений должны стать следующие параметры водяного теплоснабжения:

  • Оптимальный диаметр трубопровода. Исходя из этого можно узнать их пропускную способность, тепловые потери. С учетом выбора материала изготовления будет известно сопротивление воды о внутреннюю поверхность магистрали;
  • Потери давления и напора на определенных участках системы. Пример гидравлического расчета системы отопления позволит заранее продумать механизмы для их компенсации;
  • Расход воды;
  • Требуемую мощность насосного оборудования. Актуально для закрытых систем с принудительной циркуляцией.

На первый взгляд гидравлическое сопротивление системы отопления сложно. Однако достаточно немного вникнуть в суть вычислений и потом можно будет их сделать самостоятельно.

Для теплоснабжения небольшого дома или квартиры также рекомендуется выполнять расчет гидравлического сопротивления системы отопления.

Продуктивность обогревательных систем

Каждый владелец дома должен не только знать, как рассчитать теплопотери, но и чем именно будут полезны полученные сведения. Сравнивая данные калькулятора теплопотерь по разным комнатам, можно определить насколько продуктивным является использование обогревательных систем. При получении оптимальных показателей для нескольких помещений и неудовлетворительных результатов по остальным комнатам можно сделать полезные выводы.

Полученный коэффициент укажет на необходимости дополнительного утепления или замены окон. В помещениях, защищенных от холода, следует установить термостат на систему обогрева. Это позволит регулировать температуру и создать нужные условия для комфортного проживания. Также пригодится точный расчет и владельцам коммерческих построек офисного типа, которые желают создать оптимальную рабочую атмосферу в зимние периоды для своих коллег и подчиненных.

Важность расчета

Теплопроводность данного элемента здания – свойство строения проводить тепло через единицу своей площади при разности температур внутри и снаружи помещения в 1 град. С.

Выполняемый упомянутым выше сервисом теплотехнический расчет ограждающих конструкций необходим для следующих целей:

  • для выбора отопительного оборудования и типа системы, позволяющей не только компенсировать теплопотери, но и создать комфортную температуру внутри жилых помещений;
  • для определения необходимости дополнительного утепления здания;
  • при проектировании и строительстве нового здания для выбора стенового материала, обеспечивающего наименьшие теплопотери в определенных климатических условиях;
  • для создания внутри помещения комфортной температуры не только в отопительный период, но и летом в жаркую погоду.

От чего зависит теплопроводность

Теплопередача зависит от таких факторов, как:

  • Материал, из которого возведено строение, – различные материалы отличаются по способности проводить тепло. Так, бетон, различные виды кирпича способствуют большой потере тепла. Оцилинрованное бревно, брус, пено- и газоблоки, наоборот, при меньшей толщине имеют меньшую теплопроводность, что обеспечивает сохранение тепла внутри помещения и намного меньшие затраты на утепление и отопление здания.
  • Толщина стены – чем данное значение больше, тем меньше теплоотдача происходит через ее толщу.
  • Влажность материала – чем больше влажность сырья, из которого возведена конструкция, тем больше он проводит тепла и тем быстрее она разрушается.
  • Наличие воздушных пор в материале – заполненные воздухом поры препятствуют ускоренным теплопотерям. Если эти поры заполняются влагой, теплопотери увеличиваются.
  • Наличие дополнительного утепления – облицованная слоем утеплителя снаружи или внутри стены по потерям тепла имеют значения в разы меньше чем неутепленные.

В строительстве наряду с теплопроводностью стен большое распространение приобрел такая характеристика, как термическое сопротивление (R). Рассчитывается она с учетом следующих показателей:

  • коэффициента теплопроводности стенового материала (λ) (Вт/м×0С);
  • толщины конструкции (h), (м);
  • наличия утеплителя;
  • влажности материала (%).

Чем ниже величина термического сопротивления, тем в большей мере стена подвержена теплопотерям.

Теплотехнический расчет ограждающих конструкций по данной характеристике выполняется по следующей формуле:

R= h/ λ; (м2×0С/Вт)

Пример расчета термического сопротивления:

Исходные данные:

  • несущая стена выполнена из сухого соснового бруса толщиной 30 см (0,3 м);
  • коэффициент теплопроводности составляет 0,09 Вт/м×0С;
  • расчёт результата.

Таким образом, термическое сопротивление такой стены будет составлять:

R=0,3/0,09=3,3 м2×0С/Вт

Если полученное значение равно или больше нормативного, то материал и толщина стеновых конструкций выбраны правильно. В противном случае следует произвести утепление здания для достижения нормативного значения.

При наличии утеплителя его термическое сопротивление рассчитывают отдельно и суммируют с аналогичным значением основного стенового материала. Также если материал стеновой конструкции имеет повышенную влажность, применяют соответствующий коэффициент теплопроводности.

Для более точного расчета термического сопротивления данной конструкции к полученному результату добавляют аналогичные значения окон и выходящих на улицу дверей.

Вычисления и работы которые нужно выполнить заранее

Гидравлический расчёт – самый трудоёмкий и сложный этап проектирования.

  • Во-первых, определяется баланс отапливаемых комнат и помещений.
  • Во-вторых, необходимо выбрать тип теплообменников или отопительных приборов, а также выполнить их расстановку на плане дома.
  • В-третьих, расчет отопления частного дома предполагает, что уже сделан выбор относительно конфигурации системы, типов трубопроводов и арматуры (регулирующей и запорной).
  • В-четвёртых, должны быть сделан чертёж отопительной системы. Лучше всего, если это будет аксонометрическая схема. На ней должны быть указаны номера, длина расчётных участков и тепловые нагрузки.
  • В-пятых, установлено основное циркуляционное кольцо. Это замкнутый контур, включающий последовательные отрезки трубопровода, направленные к приборному стояку (при рассмотрении однотрубной системы) или к самому удалённому отопительному прибору(если имеет место двухтрубная система) и обратно к источнику тепла.

Алгоритм проведения расчетов

Чтобы провести полный гидравлический расчет системы, вначале нужно пройти несколько этапов:

  • Установить тепловой баланс для каждого конкретного помещения.
  • Выбрать и установить отопительные приборы по всему периметру здания или только в той его части, где расположены отапливаемые помещения.
  • Проработать окончательную аксонометрическую схему с указанием длин тепловых расчетных участков и нагрузок на отопительную магистраль.
  • Установить замкнутый контур системы, который будет заключительным звеном последовательно расположенных участков трубопровода. В двухтрубной системе они идут от источника тепла к самому отдаленному отопительному прибору, а в однотрубной – к приборной ветке-стояку.
  • Принять окончательные решения по месту установки всех источников тепла, трубопроводов, запорной и регулирующей арматуры.

После выполнения гидравлического расчета производится вычисление:

  • потерь давления на определенных участках теплосети;
  • диаметра трубы и пропускной способности;
  • потери давления в общей системе;
  • оптимального расхода теплоносителя.

По их результатам можно подобрать нужный насос.

Гидравлический расчет трубы

Эффективность отопительной системы во многом зависит от правильности выбранного диаметра труб, при этом можно ориентироваться на приведенные ниже показатели.
Для металлопластиковых труб:

  • D16 мм — пределы мощности варьируются от 2,8 до 4,5 кВт;
  • D20 мм – значения могут быть от 5 до 8 кВт;
  • D26 мм – от 8 до 13 кВт;
  • D32 мм – 13-18 кВт.

Для полипропиленовых труб:

  • D20 мм – значение мощности составляет от 4 до 7 кВт;
  • D25 мм – от 6 до 11 кВт;
  • D32 мм – от 10 до 18 кВт;
  • D40 мм – пределы варьируются от 16 до 28 кВт.

Полипропиленовые трубы
Нумерация расчетных участков трубопровода начинается от источника тепла. Узловые точки, расположенные в местах трубопровода, обозначаются заглавными буквами, но на сборных трубопроводах их указывают со штрихом. На распределительных приборных ветках такие узлы обозначаются арабскими цифрами. Длины расчетных трубопроводов определяются по планам отопления, выполненным в масштабе. Они идут с точностью в 0,1 метр.

Расчёт объема воды и вместительность расширительного бака


Объем расширительного бачка должен равняться 1/10 всего объема жидкости
Для расчета рабочих характеристик расширительного бачка, обязательного для любой системы отопления закрытого типа, потребуется разобраться с явлением увеличения объема жидкости в ней. Этот показатель оценивается с учетом изменения основных рабочих характеристик, включая колебания ее температуры. Она в этом случае изменяется в очень широком диапазоне – от комнатных +20 градусов и вплоть до рабочих значений в пределах 50-80 градусов.

Вычислить объем расширительного бака удастся без лишних проблем, если воспользоваться проверенной на практике приблизительной оценкой. Она основана на опыте эксплуатации оборудования, согласно которому объем расширительного бачка составляет примерно одну десятую часть от общего количества теплоносителя, циркулирующего в системе. При этом во внимание принимаются все ее элементы, включая отопительные радиаторы (батареи), а также водяную рубашку котельного агрегата. Для определения точного значения искомого показателя потребуется взять паспорт эксплуатируемого оборудования и найти в нем пункты, касающиеся емкости батарей и рабочего бака котла.

После их определения излишки теплоносителя в системе найти совсем несложно. Для этого сначала вычисляется площадь поперечного сечения полипропиленовых труб, а затем полученное значение умножается на длину трубопровода. После суммирования по всем веткам отопительной системы к ним добавляются взятые из паспорта цифры для радиаторов и котла. От итоговой суммы затем отсчитывается одна десятая часть.

Если, к примеру, полученная вместимость для бытовой системы составила около 150 литров, оценочная емкость расширительного бака будет равна примерно 15 литрам.

Расчет расхода теплоносителя

Задействованный объем теплоносителя, который имеется в радиаторах и трубах, должен обеспечивать нормальную температуру внутри дома, невзирая на то, какая погода будет за его стенами.
Она вычисляется по формуле:
M = Q/Cp x Р delta t, где

  • Q – общая мощность отопительной системы, кВт;
  • Cp – показатель удельной теплоемкости воды, ее обычно принимают равной 4,19 кДж/(кг «умножить на» градус по Цельсию);
  • Р delta t – температурная разница на входе и выходе системы, для расчета которой берется «обратка» и подача котла.

По приведенной формуле можно рассчитать расход жидкости в системе на любом участке трубопровода. Разбивание трубы на участки для вычислений происходит между тройниками или до редукции.
Чтобы получить точное значение, следует просчитать по мощности все радиаторы, к которым поставляется теплоноситель. Расчеты проводятся для труб перед каждой батареей.

Гидравлический расчет скорости теплоносителя

Важный показатель, который также рассчитывается на всех участках трубы до момента подключения к радиатору. Скорость движения жидкости вычисляется по формуле:
V = m/p x f, где

  • V – скорость прохождения теплоносителя по трубам, м/с;
  • m – потер теплоносителя на определенном участке трубы, кг/с;
  • p – плотность воды, кг/куб. м (она берется, как 1000 кг/куб. м);
  • f – площадь трубы в поперечном сечении, кв. м.

Последнее значение находится по формуле:
f = Пi x r2, где

  • r2 – внутренний диаметр трубы, деленный на 2;
  • Пi – математическая постоянная равная 3,14.

Гидравлический расчет напора

Теплоноситель, протекая по замкнутому контуру, преодолевает определенное гидравлическое сопротивление, чем оно больше, тем мощнее нужно покупать насос. Так, без его расчета невозможно правильно выбрать насос. Так, без его расчета невозможно правильно выбрать насос.
Гидравлический расчет напора

Расчет местных сопротивлений

Они приходятся на места соединения труб с фитингами, запорной арматурой или отопительным оборудованием. Потери напора в этом случае рассчитывается по формуле:
delta р м. с. = Summa Y x V/2 x p, где

  • delta p м. с. – потери напора на местных сопротивлениях, Па;
  • Summa Y – сумма коэффициентов всех местных сопротивлений на участке (для каждого отдельного фитинга производитель указывает свой коэффициент);
  • V – скорость прохождения теплоносителя по трубам, м/с;
  • p – плотность жидкости, циркулирующей в отопительной системе, кг/куб. м.

Вычисление потерь давления в контуре

При вычислениях учитывается и «обратка», и подача. Формула выглядит следующим образом:
delta P р = R x L, где

  • delta P p – расход давления в системе, Па;
  • R – удельный расход на трение во внутренней части трубы, Па/м (его значение указывается производителем);
  • L – длина расчетного отрезка трубопровода, м.

После всех вычислений нужно просуммировать сопротивление всех участков трубопровода и провести сравнение с контрольными значениями. Чтобы выбранный насос смог обеспечить теплом все радиаторы нужно, чтобы снижение давления на самом длинном участке трубопровода не превышала 20 тыс. Па.
Значения скорости теплоносителя должны находиться в пределах от 0,25 до 1,5 м/с. Если этот показатель будет выше, в трубах будет слышаться шум, а если оно упадет ниже минимального значения, то возрастет риск завоздушивания системы.

Проведение гидравлических расчетов в Excel

Существует несколько профессиональных и любительских программ, которые после введения формул помогают вычислять все нужные параметры. Самой популярной является Excel. В ней нет расшифровки формул, поэтому их нужно изучить заранее, чтобы затем только подставлять нужные значения.
Чтобы выполнить расчеты в Excel нужно заранее подготовить последовательность действий и подобрать нужные формулы.
Примерное заполнение табличных полей этой программы выглядит следующим образом:

  • Выполняется таблица с названиями показателей, их величиной и единицей выражения.
  • Вводятся данные для расчета, некоторые из которых берутся из справочников, другие задаются исходя из опыта или характеристик оборудования.
  • Вводятся формулы и алгоритмы вычисления.

Все расчеты программа вычисляет самостоятельно. В конце выдает суммарный результат. Наглядно увидеть примеры расчета с помощью Excel предлагаем на фото:
Проведение гидравлических расчетов в Excel 1
Проведение гидравлических расчетов в Excel 2
Внизу предоставлено видео, на котором рассказано как провести гидравлический расчет теплосети по каждому определенному параметру в программе ZuluNetTools с последующей перегонкой результатов в таблицы Excel:

Особенности выполнения вычислений в одно- и двухтрубной системе

Если в двухтрубной схеме осуществляется попутное движение теплоносителя, то для проведения расчетов выбирается кольцо с более нагруженным стояком, которое завязано через нижний радиатор, а в однотрубной системе выбирается кольцо с самым сильно нагруженным стояком.
Если используется тупиковое движение горячей воды, то для двухтрубной схемы берется кольцо нижней батареи, вмонтированной в самый дальний стояк. При горизонтальном виде разводки применяется самая загруженная ветка надподвального этажа.

Обзор программ для гидравлических вычислений

Пример программы для расчета отопления

Пример программы для расчета отопления

По сути любой гидравлический расчет систем водяного теплоснабжения является сложной инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые упрощают выполнение этой процедуры.

Можно попытаться сделать гидравлический расчет системы отопления в оболочке Excel, воспользовавшись уже готовыми формулами. Но при этом возможно возникновение следующих проблем:

  • Большая погрешность. В большинстве случаев в качестве примера гидравлического расчета отопительной системы берутся однотрубная или двухтрубная схемы. Найти подобные вычисления для коллекторной проблематично;
  • Для правильного учета гидравлического сопротивления трубопровода необходимы справочные данные, которые отсутствуют в форме. Их нужно искать и вводить дополнительно.

Учитывая эти факторы, специалисты рекомендуют использовать программы для расчета. Большинство из них платные, но некоторые имеют демоверсию с ограниченными возможностями.

Oventrop CO

Программа для гидравлического расчета

Программа для гидравлического расчета

Самая простая и понятная программа для гидравлического расчета системы теплоснабжения. Интуитивный интерфейс и гибкая настройка помогут быстро разобраться с нюансами ввода данных. Небольшие проблемы могут возникнуть при первичной настройке комплекса. Необходимо будет ввести все параметры системы, начиная от материала изготовления труб и заканчивая расположением нагревательных элементов.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитан для профессионального гидравлического сопротивления системы теплоснабжения. Бесплатная версия имеет множество ограничений. Область применения – проектирование отопления в больших общественных и производственных зданиях.

На практике для автономного теплоснабжения частных домов и квартир гидравлический расчет выполняется не всегда. Однако это может привести к ухудшению работы системы отопления и быстрому выходу из строя его элементов – радиаторов, труб и котла. Что избежать этого нужно своевременно рассчитать параметры системы и сравнить их с фактическими для дальнейшей оптимизации работы отопления.

Пример гидравлического расчета системы отопления:

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений.

Источники

  • https://uteplitel-minol.ru/truby/gidravlicheskij-raschet-otopleniya-excel.html
  • https://delta-instrument.ru/montazh/gidravlicheskoe-soprotivlenie.html
  • http://k-a-t.ru/gidravlika/6_soprotiv/index.shtml
  • https://StrojDvor.ru/otoplenie/delaem-gidravlicheskij-raschet-sistemy-otopleniya-s-pomoshhyu-programm-gotovyx-form-excel-i-samostoyatelno/
  • https://1-teplodom.ru/kalkulator-rasceta-gidravliceskogo-soprotivlenia-otoplenie-i-uteplenie-sajt-o-teple-v-vasem-dome/
  • https://ksportal.ru/937-gidravlicheskij-raschet-sistemy-otopleniya.html
[свернуть]
Поделиться:
Нет комментариев
×
Рекомендуем посмотреть
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять