Виды и выбор источников энергии
Наиболее дешевым топливом считается природный газ. Но, чтобы такая энергосистема работала бесперебойно, необходимо наличие газификации.
Генераторы, использующие дизельное топливо, бензин и пр., потребуют наличия специальной емкости для хранения горючих жидкостей с необходимостью регулярного пополнения их запасов.
Среди автономных систем, преобразующих общедоступные природные виды бесплатной энергии, наибольшее распространение сегодня получили:
- Полупроводниковые панели, преобразующие солнечную энергию в электрическую – солнечные батареи
- Ветровые генераторы, вращаемые энергией ветра
- Небольшие гидроэлектростанции
Выбирая тот или иной вид электроснабжения для своего коттеджа, необходимо учесть все его технические характеристики, плюсы и минусы, имеющиеся потребности в электроэнергии, а также экономическую составляющую вопроса.
Далее рассмотрим более подробно каждую из перечисленных независимых энергетических систем в плане использования их на практике.
Практичная альтернативная энергетика: виды
Альтернативные источники энергии – это разнообразные перспективные способы получения, а также передачи полученной электроэнергии. При этом такие источники энергии, возобновляемые, и приносят минимальный вред окружающей среде. К таким источникам энергии относятсясолнечные панели и солнечные станции.
Они в свою очередь подразделяются на 3 типа получения энергии с помощью:
- Фотоэлементов;
- Солнечных панелей;
- Комбинированных вариантов.
Популярно использование систем зеркал, которые нагревают воду до высоких температур, в результате чего получается пар, который, проходя через систему труб, крутит турбину. Ветряки и ветряные станции дают ток за счет энергии ветра, который крутит специальные лопасти, соединенные с генераторами.
Популярно использование энергии волн, а также приливов и отливов.
Из геотермальных источников горячая вода широко используется для вырабатывания электроэнергии. Интересно использование кинетической энергии в некоторых помещениях, например, в спортивных залах, где движущиеся части тренажеров соединены с помощью тяг с генераторами, которые, в результате движения людьми, вырабатывают электроэнергию.
Экономические преимущества
Финансовые достоинства альтернативных источников проявляется, прежде всего, в возможности выбирать систему энергоснабжения в доступном ценовом диапазоне, в зависимости от типа используемых топливных ресурсов, технических характеристик, авторитетности бренда производителя и прочих условий.
При этом домовладелец не несет дополнительных издержек, характерных для централизованных сетей, включающих затраты на содержание и ремонт центральной магистрали — он покупает только то оборудование, которое будет обеспечивать энергией только его дом.
- Еще один финансовый нюанс — это регулярные платежи. При наличии собственного альтернативного источника нет необходимости оплачивать ежемесячные коммунальные издержки, совершенно необоснованно завышенные.
- В список экономических преимуществ нужно добавить возможность снизить затраты на монтажные работы, так как они ограничиваются только пределами дома и двора.
- И наконец, главное достоинство — это низкая стоимость эксплуатации оборудования для альтернативных систем энергообеспечения дома.
Как следствие всех этих приоритетов — очень быстрая окупаемость таких энергетических источников. Если сюда добавить возможность внесения изменений в проект частного дома , и невысокую стоимость таких работ в компании ИнноваСтрой, то приоритетность альтернативных источников станет совершенно очевидной.
Технические преимущества
Главное техническое достоинство состоит в том, что альтернативный источник энергии для дома позволяет регулировать и контролировать эксплуатационные характеристики по усмотрению хозяина дома.Еще один очевидный «плюс» в том, что владелец оборудования всегда может отключить его за ненадобностью — при длительном отсутствии, например.
Обслуживание источников альтернативной энергетики — еще одно преимущество. Плановый технический осмотр зависит только от ответственности и желания домовладельца. При этом не нужно планировать день, чтобы подстраиваться под визит бригады из центральной службы электросетей.Если понадобится заменить оборудование — это тоже в силах и в возможностях самого владельца. Полная энергетическая независимость с ее техническими возможностями, которую предоставляют альтернативные источники энергии в частном доме, — это еще и независимость от государственных служб, контролирующих органов, и их не всегда компетентных действий.
Альтернативные источники энергии
Варианты отопления частного дома:
- Система получения тепла в традиционном варианте. Источник тепла – котел. Тепловая энергия распределяется теплоносителем (вода, воздух). Улучшить можно посредством увеличения теплоотдачи котла.
- Энергосберегающее оборудование, которое применяется в новых технологиях отопления. Для обогрева жилья энергоносителем выступает электричество (гелиосистема, разные типы электрического обогрева и солнечные коллекторы).
Новые технологии в отоплении должны помощь в решении вопросов:
- Уменьшение затрат;
- Бережное отношение к природным ресурсам.
Давайте, вкратце перечислим основные источники альтернативной энергии, которые можно использоваться в частном доме. Это:
- Использование солнечной энергии для получения тепла и электричества;
- Использование ветрогенераторов;
- Различные виды тепловых насосов;
- Энергия из биотоплива;
- Самодельные гидроэлектростанции;
- Прочие.
Альтернативные источники энергии для частного дома
Солнечная энергия для получения электричества и тепла
Солнце ─ это один из наиболее распространённых и мощных источников энергии, используемых в частных домах. С помощью различных установок солнечную энергию преобразовывают в тепло или электричество. Очень часто в домах можно встретить оба варианта. Современные модели солнечных батарей и тепловых коллекторов позволяют получать тепло и электричество в ясную погоду даже зимой. Так, что если в вашем регионе много солнечных дней, то такие установки рекомендуются для использования солнечной энергии.
Получение электричества
Солнечные батареи, используемые для преобразования энергии солнца в электричество, собраны из фотоэлементов. Фотоэлектрические пластины изготовлены на базе кремния с различными добавками. Когда на них попадает солнечный свет, они испускают электроны и возникает электрический ток. В основе этого процесса лежит явление p-n перехода.
Принцип действия фотоэлементов
Схема работы солнечной батареи
Фотоэлементы в зависимости от своей структуры бывают монокристаллическими и поликристаллические. Монокристаллические имеют КПД немного выше поликристаллических, и показывают хорошую производительность даже в пасмурную погоду.
Многие собирают солнечные батареи своими руками из фотоэлементов, которые можно без проблем купить в интернете. Порядок действий примерно следующий:
- Изготавливается каркас из дерева или металла. Предпочтительнее делать из алюминия;
- Затем делается подложка для установки фотоэлементов и стекло. Иногда фотоэлементы наклеиваются прямо на стекло (оргстекло, поликарбонат), а не на подложку;
- Элементы собираются в единую батарею с помощью пайки. Это делается при помощи медных лужёных шин. Они также продаются в специализированных онлайн-магазинах;
- Далее проводится герметизация. Для этого могут быть использованы герметики, эпоксидная смола, специальные плёнки. Здесь важно добиться того, чтобы между стеклом и фотоэлементами не было пустот (воздушных пузырей);
- Далее батарея собирается и подключается в гелиосистему. В зависимости от электрических характеристик, требуемых на выходе, батареи могут объединяться последовательно и параллельно. Одна батарея, как правило, имеет номинал напряжения 18 вольт.
Получение тепловой энергии
Солнечную энергию в частных домах также используют для нагрева воздуха или воды. Для этого применяется установка под названием солнечный коллектор. При этом нагретая вода может быть использована как для обогрева дома, так и для горячего водоснабжения. Чтобы минимизировать влияние погоды, тепловые коллекторы используются совместно с бойлерами и котлами на газе или электричестве. Можно выделить три основных типа солнечных коллекторов:
- Плоские;
- Вакуумные;
- Воздушные.
Ветрогенератор в частном доме
Ещё одним неиссякаемым источником энергии на нашей планете является ветер. Для преобразования энергии ветра в электрическую применяются ветрогенераторы. Их целесообразно устанавливать в частных домах тех регионов, где высокая среднегодовая скорость ветра. Обычно это прибрежные и равнинные районы.
Схема работы ветрогенератора
Устройство ветрогенератора
Сам по себе ветрогенератор не используется. Он может эффективно работать только в составе ветряной системы. Как и в случае гелиосистем, в состав такой системы входят:
- Контроллер;
- Аккумуляторы;
- Инвертор;
- Кабели, соединители, крепёж.
При использовании ветрогенераторов существует ряд проблем. Стоимость таких установок довольно высокая, даже если их мощность небольшая. Если в местности, где вы проживаете, среднегодовые скорости ветра небольшие, то установка не окупится. К тому же, ветрогенераторы создают шум при работе. Поэтому их нужно устанавливать на удалении от жилых домов, а для этого не всегда есть возможность и доступные площади.
Энергия ветра
Приручить ветер людям удалось уже 40 лет назад, когда появились первые ветрогенераторы. В сегодняшних реалиях такие установки становятся не только актуальными и востребованными — в некоторых странах оснащение ветроэлектростанциями стало тенденцией для целых регионов. В Новой Зеландии существуют целые районы, потребляющие мощность энергии ветра.
В наших условиях такая тенденция пока не приобрела признаков такой актуальности и находится в стадии становления. Тем не менее, в некоторых частных домах уже появились ветряки, продуцирующие электроэнергию даже при слабом движении ветра — от 2 до 6 метров в секунду. В регионах с сильными порывами ветра достаточно установить мачту высотой до 15 метров, чтобы обеспечивать доступной электроэнергией несколько домов. Там, где таких ветров мало, используются более высокие мачты — до 30-45 метров с большим размахом лопастей и их численностью до 30 штук.
Поражает энергоэффективность и экономическая рентабельность этого типа альтернативной энергетики. Например, всего один ветрогенератор, продуцирующий 1 мВт энергии, способен за двадцатилетний период сэкономить 90 000 тонн нефти! Это же устройство избавит от необходимости сжечь за тот же период 30 тысяч тонн угля! При этом затраты на установку и эксплуатацию окупаются гораздо быстрее, чем при сооружении традиционных источников энергии.
Несколько омрачает эффективность источников с ветряной энергией необходимость использования аккумуляторов. При непостоянстве и разнице в силе ветра продуцирование электроэнергии этим источником нельзя назвать стабильным. Поэтому приходится накапливать ее излишки в аккумуляторных батареях. Недостаток этого метода в том, что стоимость самих аккумуляторов занимает 25-30% всего бюджета на оснащение этого альтернативного источника энергии. К тому же при частой эксплуатации аккумуляторы имеют непродолжительный период жизни.
Тепловые насосы
Тепловой насос – это ещё один вариант установки для организации отопления и ГВС в частном доме. Только здесь используется не солнечная энергия, а тепло от земли, воды и воздуха. В основу положен принцип холодильника, при котором тепло отбирается у какой-то среды и передаётся в систему отопления.
Принцип действия теплового насоса
В зависимости от среды, у которой отбирается тепло, и куда оно передаётся, различают тепловые насосы:
- Вода-вода;
- Воздух-воздух;
- Воздух-вода;
- Грунт-вода.
Вне зависимости от среды, с которой идёт работы, в установках подобного типа присутствуют: компрессор, теплообменник, испаритель.
Вода-вода
Тепловые насосы типа «вода-вода» отбирают тепло у воды из грунтовых вод и передают его воде, циркулирующей в системе отопления и ГВС частного дома. Коллектор для сбора тепла укладывается в водоёме (он не должен промерзать целиком) рядом с домом или под него бурятся скважины. Скважины бурятся на глубину около 15 метров.
Тепловой насос вода-вода
Воздух-воздух
Это наиболее доступный вариант среди всех тепловых насосов. Конструкция таких установок похожа на сплит-систему. Электричество в насосах воздух-воздух расходуется на отбор тепла из окружающей среды и перекачка его в дом. Современные модели таких насосов могут работать при сильных морозах, хотя при этом падает их эффективность.
Тепловой насос воздух-воздух
Один киловатт электроэнергии в таких системах превращается примерно в 5 кВт тепла.
Воздух-вода
Тепловые насосы по схеме воздух-вода довольно широко распространены в частных домах и производственных помещениях. Внешний блок этой установки забирает тепло из окружающей среды и с его помощью нагревает воду. Подобные конструкции получили широкое распространение благодаря доступной цене и простому монтажу.
Тепловой насос воздух-вода
Однако есть и отрицательные моменты. В российском климате их не получиться использовать зимой. Высокий КПД тепловых насосов воздух-вода сохраняется при температуре 7─15 С. В зоне отрицательных температур эффективность сильно падает.
Грунт-вода
Эта разновидность тепловых насосов является самой универсальной и наиболее дорогостоящей. Зато подобные системы можно реализовать практически в любой климатической зоне, где есть непромерзающий слой грунта на доступной глубине.
Тепловой насос грунт-вода
Коллектор с циркулирующим в нём теплоносителем укладывается в непромерзающий слой земли. В этом слое температура круглый год держится примерно 7─10 С. Расположение коллектора может быть горизонтальным или вертикальным. В любом случае здесь большие затраты на проведение монтажных работ. Это выливается в значительные финансовые траты. Так, что здесь нужно заранее просчитать окупаемость такой установки и все резоны. Кроме того, под укладку коллектора требуется свободное пространство рядом с домом, а это не всегда возможно.
Теплый пол
Инфракрасный пол (ИК) – современная технология обогрева. Основным материалом выступает необычная пленка. Положительные качества – гибкость, повышенная прочность, влагостойкость, огнеустойчивость. Укладывать можно под любой напольный материал. Излучение ИК пола хорошо влияет на самочувствие, идентично действию солнечных лучей на организм человека. Денежные расходы на укладку ИК пола меньше на 30-40% чем при затратах на установку полов с электрическими элементами подогрева. Экономия электроэнергии при использовании пленочного пола 15-20%. Пульт управления регулирует температуру в каждой комнате. Нет шума, запаха, пыли.
При водяном способе подачи тепла в стяжку пола ложится металлопластиковая труба. Температура нагрева ограничивается 40 градусами.
Водяные солнечные коллекторы
Инновационная отопительная технология применяется в местах с большой солнечной активностью. Водяные солнечные коллекторы располагают на открытых для солнца местах. Обычно это крыша здания. От солнечных лучей вода нагревается и направляется внутрь дома.
Отрицательным моментом является невозможность использования коллектора в ночное время. Нет смысла применять в районах северного направления. Большим плюсом использования этого принципа получения тепла будет общедоступность энергии солнца. Не приносит вреда природе. Не занимает полезную площадь во дворе дома.
Гелиосистемы
Применяются тепловые насосы. При общем расходе электроэнергии в 3-5 кВт насосы перекачивают от природных источников в 5-10 раз больше энергии. Источником выступают природные ресурсы. Полученная тепловая энергия поступает в теплоноситель при помощи тепловых насосов.
Инфракрасное отопление
Инфракрасные обогреватели нашли применение в виде основного и дополнительного отопления в любом помещении. При низком потреблении электроэнергии получаем большую теплоотдачу. Воздух в помещении не пересушивается.
Установка легко крепится, не нужны дополнительные разрешения на этот вид обогрева. Секрет экономии – в том, что тепло накапливается в предметах и стенах. Применяют потолочные и настенные системы. У них большой срок службы, более 20 лет.
Плинтусная технология отопления
Схема работы плинтусной технологии обогрева помещения напоминает работу ИК-нагревателей. Нагревается стена. Потом она начинает отдавать тепло. Инфракрасное тепло отлично переносится человеком. Стены не будут подвержены грибку и плесени, поскольку всегда будут сухими.
Легко устанавливается. Регулируется подача тепла в каждой комнате. Летом можно систему использовать для охлаждения стен. Принцип действия, как и при обогреве.
Воздушная система отопления
Отопительная система построена по принципу терморегуляции. Горячий или холодный воздух подается непосредственно в помещение. Основной элемент – печь с газовой горелкой. Сгораемый газ отдает тепло в теплообменник. Оттуда нагретый воздух поступает в помещение. Не требует водопроводных труб, радиаторов. Решает три вопроса – отопление помещения, вентиляция.
Преимущество в том, что отопление можно запустить в работу постепенно. При этом действующее отопление не пострадает.
Теплоаккумуляторы
Теплоноситель нагревается ночью в целях экономии денежных расходов на электроэнергию. Теплоизолированный бак, емкость больших размеров представляет собой аккумулятор. Ночью он нагревается, днём идет отдача тепловой энергии для отопления.
Геотермальная энергетика
Использование энергии недр земли — еще одно перспективное направление в современной энергетике. Продуцирование энергии осуществляется с помощью специальных устройств — тепловых насосов. Перекачивая теплую подземную воду и охлаждая ее, такие насосы отбирают у нее тепловую энергию, преобразуя ее в электрическую энергию.
При этом они способны сами себя обеспечить электричеством для поддержания функциональности. Коэффициент расхода и производства электроэнергии составляет 1,6 единиц. Поэтому выделенной энергии вполне хватает на обеспечение потребительской сети и для работы самого насоса.Любопытно и то, что во время вырабатывания электроэнергии может одновременно происходить подогрев теплоносителя для отопительной системы за счет нагрева вращательных элементов в конструкции теплового насоса.
Биологические источники
Эту категорию представляют альтернативные источники энергии в частном доме, которые используют в качестве сырья биологические компоненты растительного или животного происхождения.
Например, для продуцирования биогаза разработаны автономные системы и целые производственные комплексы, работающие за счет выделения энергии из навоза, отходов растительности и даже древесных отходов.Наука обнаруживает все новые возможности использования биоресурсов для продуцирования энергии. Например, недавно начались исследования по аккумулированию солнечной энергии с участием обычных водорослей.Из сахарной свеклы можно вырабатывать биотопливо, на котором могли бы работать бензиновые или дизельные электрогенераторы. Аналогично такое альтернативное топливо вырабатывается и из рапса, сои и кукурузы.
Использование компьютерных модулей и выделяемого ими тепла
Для запуска системы подачи тепла необходимо подключение интернета и электричества. Принцип работы: используется тепло, которое выделяет процессор при работе.
Применяют компактные и недорогие ASIC-чипы. Собирают в одно устройство несколько сотен чипов. По себестоимости эта установка выходит, как обычный компьютер.
Характеристика генератора Тесла
Спустя десятилетие после получения патента на переменный ток, Тесла создал схему генератора свободной энергии с самозапиткой. Бестопливная модель потребляет мощность самой установки. Чтобы запустить ее, требуется единственный импульс из аккумулятора. Однако это изобретение до сих пор не используется в хозяйстве. Работа прибора напрямую зависит от конструкции, в которую вошли компоненты:
- Две специальные железные пластины, одна поднимается вверх, а другая устанавливается в земле.
- В конденсатор подключаются два провода, идущие от заземления и сверху.
Металлической пластине передается постоянный электрический заряд, ввиду того что источники выделяют лучистые частицы микроскопических размеров. Земля является резервуаром с отрицательными частицами, поэтому терминал прибора подводится к ней. Заряд высокий, поэтому в конденсатор постоянно поступает ток, и благодаря этому он питается.
Особенности ветрогенераторов
Вертикальный ветрогенератор
Источники ветровой электроэнергии работают по принципу преобразования кинетической энергии в механическую, а затем – в переменный ток. Электричество можно получить при минимальной скорости ветрового потока от 2 м/с. Оптимальной является скорость ветра от 5 до 8 м/с.
Виды ветряных генераторов
По типу крепления ротора существуют модификации:
- Горизонтальные – отличаются минимальным количеством материалов для изготовления и большим КПД. Минусы прибора заключаются в высокой монтажной мачте и сложности механической части.
- Вертикальные – работают в большом диапазоне ветровой скорости. Специфика генератора – необходимость дополнительной фиксации мотора.
По количеству лопастей существуют одно- или многолопастные модели. По материалу лопасти классифицируются на парусные и жесткие. Винтовой шаг установки бывает изменяемым (можно выставить рабочую скорость) и фиксируемым.
При строительстве ветровой установки обязательно создается и укрепляется фундамент.
Конструкция ветрогенератора
Конструкция ветрогенератора
Готовый ветряной генератор состоит из таких частей:
- вышка – ставится в ветреной зоне;
- лопастный генератор;
- контроллер лопастей – преобразует переменный ток в постоянный;
- инвертор – трансформирует постоянный ток в переменный;
- накопительный аккумулятор;
- резервуар для воды.
Накопительная АКБ сглаживает разницу в сезон ветров и период штиля.
Изготовление тихоходного ветрогенератора из генератора машины
Создание ветрогенератора из автомобильного генератора
Поскольку комплект для сборки ветрогенератора стоит от 250 до 300 тыс. руб, конструкцию целесообразно сделать собственноручно. Понадобится генератор автомобиля и аккумуляторная батарея.
Лопасти обеспечивают работу других устройств ветряка. Самостоятельно их можно изготовить из ткани, металла или пластиковой трубы следующим образом:
- Выбрать материал с хорошей ветроустойчивостью – толщиной от 4 см.
- Рассчитать длину лопасти так, что диаметр трубы равнялся 1/5.
- Обрезать трубу и применять ее в качестве шаблонов.
- Пройтись по краям всех элементов наждачкой для удаления неровностей.
- Зафиксировать пластиковые лопасти на диске из алюминия.
- Произвести балансировку колеса посредством фиксирования в горизонтальном положении.
- Обточить края ветрового колеса при вращении.
Оптимальная схема лопастей – большое количество, но меньший размер.
Мачта должна быть надежной, прочной и не раскачиваться
Проект изготовления мачты нужно начать с выбора материала. Понадобится стальная труба длиной 7 м и диаметром 150-200 м. При наличии препятствий колесо поднимается выше их на 1 м.
Для дополнительной устойчивости конструкции изготавливаются колышки под растяжку из стального или оцинкованного троса 6-8 мм в толщину. Мачту и колышки нужно забетонировать.
Процесс переделки автогенератора заключается в перемотке старторного узла и создании ротора на основе неодимовых магнитов. В приборе просверливаются отверстия под них. Магниты нужно ставить, чередуя полюса и заполнять пустоты эпоксидкой.
Ротор оборачивается бумагой для перемотки катушки в одном направлении по трехфазной схеме. На последнем этапе генератор тестируется – при 300 оборотах должно показывать 30 В.
Читайте также: Ремонт наушников — как припаять штекер к наушникам
Чем больше витков на катушке, тем эффективнее работает генератор.
Альтернативные ветровые источники тепла и электрической энергии собираются после изготовления поворотной оси. Понадобится труба с двумя подшипниками и хвостовая часть из оцинкованного листа 1,2 мм в толщину.
Генератор крепится к мачте посредством рамы их профтрубы. Расстояние от балки до лопастей должно быть больше 25 см. После сборки базовой конструкции монтируются контроллер заряда, инвертор и АКБ.
Тепловые насосы для отопления дома
Тепловые насосы используют все имеющиеся в наличии альтернативные источники энергии. Они отбирают тепло у воды, воздуха, грунта. В небольших количествах это тепло есть там даже зимой, вот его и собирает тепловой насос и перенаправляет на обогрев дома.
Тепловые насосы также используют альтернативные источники энергии — тепло земли, воды и воздуха
Принцип работы
Чем же так привлекательны тепловые насосы? Тем, что затратив 1 кВт энергии на ее перекачку, в самом плохом варианте вы получите 1,5 кВт тепла, а самые удачные реализации могут дать до 4-6 кВт. И это никак не противоречит закону сохранения энергии, ведь расходуется энергия не на получение тепла, а не его перекачивание. Так что никаких нестыковок.
Схема теплового насоса для использования альтернативных источников энергии
У тепловых насосов есть три рабочих контура: два наружных и они внутренний, а также испаритель, компрессор и конденсатор. Работает схема так:
- В первом контуре циркулирует теплоноситель, который отбирает тепло у низкопотенциальных источников. Он может быть опущен в воду, закопан в землю, а может отбирать тепло у воздуха. Самая высокая температура, которая достигается в этом контуре — около 6°C.
- Во внутреннем контуре циркулирует теплоноситель с очень низкой температурой кипения (обычно 0°C). Нагревшись, хладагент испаряется, пар попадает в компрессор, где сжимается до высокого давления. При сжатии выделяется тепло, пары хладагента разогреваются до температуры в среднем от +35°C до +65°C.
- В конденсаторе тепло передается теплоносителю из третьего — отопительного — контура. Остывающие пары конденсируются, затем дальше попадают в испаритель. И далее цикл повторяется.
Отопительный контур лучше всего делать в виде теплого пола. Температуры для этого самые подходящие. Для радиаторной системы потребуется слишком большое число секций, что некрасиво и невыгодно.
Альтернативные источники тепловой энергии: откуда и как брать тепло
Но самые большие сложности вызывает устройство первого внешнего контура, который собирает тепло. Так как источники низкопотенциальные (тепла у низ мало), то для сбора его в достаточном количестве требуются большие площади. Есть четыре вида контуров:
- Кольцами уложенные в воде трубы с теплоносителем. Водоем может быть любым — река, пруд, озеро. Главное условие — он не должен промерзать насквозь даже в самые сильные морозы. Более эффективно работают насосы, выкачивающие тепло из речки, в стоячей воде тепла передается намного меньше. Такой источник тепла реализуется проще всего — закинуть трубы, привязать груз. Только велика вероятность случайного повреждения.
- Термальные поля с закопанными ниже глубины промерзания трубами. В этом случае недостаток один — большие объемы земляных работ. Приходится снимать грунт на большой площади, да еще на солидную глубину.
- Использование геотермальных температур. Бурят некоторое количество скважин большой глубины, в них опускают контура с теплоносителем. Чем хорош этот вариант — мало места требует, но не везде есть возможность бурить на большие глубины, да и услуги буровых стоят немало. Можно, правда, сделать буровую установку самостоятельно, но работа все равно нелегкая.
- Извлечение тепла из воздуха. Так работают кондиционеры с возможностью обогрева — отбирают тепло у «забортного» воздуха. Даже при минусовой температуре такие агрегаты работают, правда при не очень «глубоком» минусе — до -15°C. Чтобы работа была интенсивнее, можно использовать тепло от вентиляционных шахт. Закинуть туда несколько переть с теплоносителем и качать оттуда тепло.
Основной недостаток тепловых насосов — высокая цена самого насоса, да и монтаж полей сбора тепла обходится недешево. На этом деле можно сэкономить, сделав насос самостоятельно и также своими руками уложив контура, но сумма все равно останется немалой. Плюс в том, что отопление будет недорогим а действовать система будет долго.
Как сделать солнечные панели
В некоторых европейских странах с помощью солнечных панелей обеспечивается электроэнергия для небольших населенных пунктов.
Принцип работы
Принцип работы данного источника энергии основан на способности фотоэлементов преобразовывать энергию солнечного света в электрическую. Такие устройства состоят из:
- Солнечных панелей. Представляют собой комплекс элементов, преобразующих поток электронов из поступающего солнечного света.
- Аккумуляторов. Обычно устанавливается несколько батарей, особенно если речь идёт о большом доме. В процессе эксплуатации можно добавить дополнительных аккумуляторов.
- Контроллеров. Такие устройства используются для обеспечения оптимальной зарядки аккумуляторов. Их функция заключается в предотвращении перегрева батарей в результате перезарядки.
- Инверторов. Предназначение этих приборов заключается в преобразовании электрического тока. АКБ генерируют ток с низким напряжением, поэтому возникает необходимость в его преобразовании с помощью инверторов. Для частного использования достаточно мощности 3-5 кВт.
В батареях, предназначенных для использования в частных домах, применяются кремниевые фотоэлементы. Существует две разновидности данных элементов:
- Поли-кристаллические. Весьма хрупкие, требуют максимально бережного обращения. Характеризуются низким КПД (10-15%), небольшим эксплуатационным периодом (до 20 лет). Единственное достоинство – дешевизна.
Наглядное отличие разновидностей фотоэлементов
- Моно-кристаллические. Характеризуются надежностью, прочностью, продолжительным сроком службы (при правильной эксплуатации до 50 лет) и высоким КПД (25-30%). Единственный недостаток – относительно высокая стоимость.
Схема работы солнечных панелей
Экономика получения энергии из солнца у себя дома
В большинстве регионов Российской Федерации (кроме Ленинградской области и ещё некоторых субъектов на северо-западе) количество солнечных дней преобладает над пасмурными. Поэтому использование солнечной энергии в таких регионах рационально. При затратах на оборудование среднестатистического частного дома (80 кв.м.) в 100 т.р. они окупаются за 1-2 года.
Отличительная особенность таких источников энергии заключается в том, что они не способны выдавать высокого напряжения. В среднем (зависит от конкретной модели) одна солнечная батарея выдаёт напряжение 18-21 В. Такого тока хватает для подзарядки аккумулятора на 12 вольт. Инвертор, АКБ и контроллер необходимо приобретать готовыми, ибо это довольно сложные с технической точки зрения приборы. Солнечные панели можно изготовить самостоятельно. Как сделать такой альтернативный источник энергии своими руками мы расскажем далее.
Изготовление и сборка корпуса для панелей
Примерно так должен выглядеть корпус
Для создания корпуса солнечной панели понадобятся следующие материалы:
- Бруски (размер произвольный, оптимальный 25х25 мм).
- Фанера (или подобный листовой материал, например, OSB).
- Оргстекло.
- Силикон.
- ДВП.
Из фанеры с помощью электролобзика (можно использовать ножовку, но лобзиком быстрее) вырезается днище корпуса. Размер выбирается, исходя из количества фотоэлементов и площади крыши.
Из брусков изготавливается рамка, в которую вставляются листы фанеры. По всему периметру конструкции с шагом 20-25 см сверлятся отверстия диаметром примерно 1 см. Они нужны для предотвращения перегрева конструкции при эксплуатации.
Сборка основных элементов
Из ДВП вырезается подложка по размеру корпуса, изготовленного ранее. После нарезки на листовом материале делаются вентиляционные отверстия с шагом 5-7 см. В конце корпус обрабатывается антисептиком (или специализированной пропиткой для дерева) и покрывается краской в два слоя. Такая мера нужна для предотвращения гниения древесины в результате постоянного воздействия ультрафиолетовых лучей и атмосферных осадков.
Фотоэлементы выкладываются на подложку из ДВП и производится распайка этих элементов последовательным соединением. Отдельные элементы соединяются в ряды, а затем несколько рядов объединяются в единую систему.
После спайки фотоэлементы необходимо перевернуть на другую сторону и зафиксировать силиконом. Затем с помощью мультиметра проверяется величина выходного напряжения. Оптимальное значение: 18-20 В.
Фотоэлементы в сборе
Следующий этап – тестирование. Собранные батареи подключаются на несколько дней. За этот промежуток проверяется их работоспособность. Убедившись в исправности системы, производится герметизация стыков.
Окончательная сборка системы
Первым делом все провода выводятся наружу, чтобы их можно было подключить к приборам. Из оргстекла (можно использовать обычный стеклорез) вырезается крышка. Она закрепляется к краям корпуса саморезами по металлу (у них шляпка больше, что обеспечивает большую прочность конструкции).
Солнечные элементы можно заменить на цепь из диодов типа Д223Б. Солнечная панель, с 36-ю такими диодами обеспечит напряжение около 12В. Перед сборкой конструкции необходимо удалить краску с диодов, замочив их в ацетоне. Далее размещается на пластиковой панели и производится распайка. Собранная конструкция помещается в прозрачный кожух, стыки обрабатываются герметиком.
Если мансардные перекрытия достаточно прочные, можно целиком покрыть крышу солнечными панелями.
Несколько важных правил
Чтобы обеспечить работоспособность изготовленной системы, учитывайте следующие параметры:
- Солнечные батареи нельзя располагать в тени (от деревьев или построек), в противном случае она не будет оптимально функционировать. Учитывайте это при составлении чертежа.
- Для обеспечения максимального КПД установки, фотоэлементы должны быть направлены в сторону солнца. Исходя из этого, в северном полушарии батареи необходимо направлять на юг, в южном полушарии на север.
- Панель желательно размещать под углом, равным географической широте. В таком случае солнечные лучи будут попадать на панели под оптимальным углом.
- Все элементы конструкции необходимо периодически чистить.
Оптимальное размещение пластин – на скатной крыше дома
Проектирование домов с альтернативными источниками энергии
Как видно, уже сейчас человечество имеет в своем распоряжении вполне реальные, эффективные, обладающие высокой продуктивностью современные источники альтернативной энергии для дома.
Задача проектировщиков, строителей и даже самого застройщика — в том, чтобы выбрать максимально выгодную альтернативную систему с учетом климатических условий, технических особенностей проекта, доступности того или иного источника.И только опытные и компетентные специалисты из профессионального штата сотрудников компании ИнноваСтрой могут наиболее рационально справиться с этой задачей. Ведь недостаточно просто спроектировать дом — необходимо оформить его ввод в эксплуатацию при наличии альтернативных источников энергии.
Да и сам проект необходимо подготовить таким образом, чтобы эти источники могли гармонично вписываться в общую концепцию стиля, и полностью соответствовали проектным нормативам, требованиям государственной стандартизации и соображениям безопасности.
- https://kupisantehniky.ru/alternativnaa-energetika-dla-doma-svoimi-rukami-obzor-lucsih-razrabotok/
- https://innstroy.ru/enciklopedija-stroitelstva/alternativnye-istochniki-energii-dlya-doma
- https://akbinfo.ru/alternativa/alternativnye-istochniki-jenergii-dlja-chastnogo-doma.html
- https://texnotoys.ru/elektronika/svobodnaya-energiya-svoimi-rukami.html
- https://PromStroiEkspertiza.ru/otdelka/elektrichestvo-dlya-doma-svoimi-rukami-2.html
- https://future2day.ru/kak-sdelat-iistochnik-energii/